47 resultados para Acoustic wave propagation

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the propagation of waves in an elastic tube filled with an inviscid fluid. We consider the case of inhomogeneity whose mechanical and geometrical properties vary in space. We deduce a system of equations of the Boussinesq type as describing the wave propagation in the tube. Numerical simulations of these equations show that inhomogeneities prevent separation of right-going from left-going waves. Then reflected and transmitted coefficients are obtained in the case of localized constriction and localized rigidity. Next we focus on wavetrains incident on various types of anomalous regions. We show that the existence of anomalous regions modifies the wavetrain patterns. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the propagation of nonlinear electromagnetic short waves in ferromagnetic insulators. We show that such propagation is perpendicular to an externally applied field. In the nonlinear regime we determine various possible propagation patterns: an isolated pulse, a modulated sinusoidal wave, and an asymptotic two-peak wave. The mathematical structure underlying the existence of these solutions is that of the integrable sine-Gordon equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pulsed electric acoustic technique, PEA, have been usually applied to probe space charge profiles in polymers. In this work we show preliminary results obtained with lead zirconate-titanate and niobium, PZTN, ferroelectric ceramic samples. Experiments showed that induced charge densities on sample electrodes are mainly due to the ferroelectric polarization of the sample. We present results of the typical PEA response and the procedure to deconvolute the signal in order to obtain the charge densities and the electric field profiles. The PEA setup allows us to show a non-uniform polarization during ferroelectric switching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the study of an attractive interfacial wave for application in ultrasonic NDE techniques for inspection and fluid characterization. This wave, called quasi-Scholte mode, is a kind of flexural wave in a plate in contact with a fluid which presents a good sensitivity to the fluid properties. In order to explore this feature, the phase velocity curve of quasi-Scholte mode is experimentally measured in a plate in contact with a viscous fluid, showing a good agreement with theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents recent improvements in a density measurement cell with a double-element transducer that can eliminate diffraction effects. A new mechanical design combined with the use of more appropriate materials has resulted in better parallelism between interfaces, more robust assembly, and chemical resistance. A novel method of signal processing, named energy method, is introduced to obtain the reflection coefficient, reducing sensitivity to noise and improving accuracy. The measurement cell operation is verified both theoretically, using an acoustic wave propagation model, and experimentally, using homogeneous liquids with different densities. The accuracy in the density measurement is 0.2% when compared with the measurements made with a pycnometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work it is introduced a new approach to calculate the density of liquids in terms of the energies of the acoustic signals. This method is compared to other methods in the time domain (peak-to-peak amplitudes) and frequency domain magnitudes at a single frequency. It is used a measurement cell based on a multiple reflection technique, and it is developed an acoustic model for the cell. Simulations and experiments using several liquids are presented, showing that the energy method a less sensitive to noise than the other techniques. The relative errors in the density are smaller than 0.2% when compared to the values measured with a pycnometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims at finding out the threshold to burning in surface grinding process. Acoustic emission and electric power signals are acquired from an analog-digital converter and processed through algorithms in order to generate a control signal to inform the operator or interrupt the process in the case of burning occurrence. The thresholds that dictate the situation of burn and non-burn were studied as well as a comparison between the two parameters was carried out. In the experimental work one type of steel (ABNT-1045 annealed) and one type of grinding wheel referred to as TARGA model 3TG80.3-NV were employed. Copyright © 2005 by ABCM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The pulsed electric acoustic technique, PEA, has been usually applied to probe space charge profiles in polymers. Preliminary PEA results using a ferroelectric ceramic are presented. If the reverse applied electric field i of the order of the coercive field the switching polarization process occurs in a period larger than hundreds of seconds. Such a slow process allows one to use the PEA setup to follow the polarization switching dynamics and determine the electric field profile. The PEA signal obtained in the lead zirconate-titanate doped with niobium ceramic, PZTN, indicates that the polarization distribution and field are not uniform during the switching period. We were also able to observe that the acoustic wave velocity and attenuation depends on the stage of the polarization switching, which agrees with results obtained using the ultrasonic method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerical modeling of the interaction among waves and coastal structures is a challenge due to the many nonlinear phenomena involved, such as, wave propagation, wave transformation with water depth, interaction among incident and reflected waves, run-up / run-down and wave overtopping. Numerical models based on Lagrangian formulation, like SPH (Smoothed Particle Hydrodynamics), allow simulating complex free surface flows. The validation of these numerical models is essential, but comparing numerical results with experimental data is not an easy task. In the present paper, two SPH numerical models, SPHysics LNEC and SPH UNESP, are validated comparing the numerical results of waves interacting with a vertical breakwater, with data obtained in physical model tests made in one of the LNEC's flume. To achieve this validation, the experimental set-up is determined to be compatible with the Characteristics of the numerical models. Therefore, the flume dimensions are exactly the same for numerical and physical model and incident wave characteristics are identical, which allows determining the accuracy of the numerical models, particularly regarding two complex phenomena: wave-breaking and impact loads on the breakwater. It is shown that partial renormalization, i.e. renormalization applied only for particles near the structure, seems to be a promising compromise and an original method that allows simultaneously propagating waves, without diffusion, and modeling accurately the pressure field near the structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To analyze the components of the acoustic signal of swallowing using a specific software. Methods: Fourteen healthy subjects ranging in age from 20 to 50 years (mean age 31±10 years), were evaluated. Data collection consisted on the simultaneous capture of the swallowing audio with a microphone and of the swallowing videofluoroscopic image. The bursts of the swallowing acoustic signal were identified and their duration and the interval between them were later analyzed using a specific software, which allowed the simultaneous analyses between the acoustic wave and the videofluoroscopic image. Results: Three burst components were identified in most of the swallows evaluated. The first burst presented mean time of 87.3 milliseconds (ms) for water and 78.2 for the substance. The second burst presented mean time of 112.9 ms for water and 85.5 for the pasty substance. The mean interval between first and second burst was 82.1 ms for water and 95.3 ms for the pasty consistency, and between second and third burst was 339.8 ms for water and 322.0 ms for the pasty consistency. Conclusion: The software allowed the visualization of three bursts during the swallowing of healthy individuals, and showed that the swallowing signal in normal subjects is highly variable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present here some results of our research related to the optoelectronics and photonics and show all the experimental setups used. Starting with a discussion on the importance of the waves, we demonstrate our achievements based on employment of acoustic, optical, and microwaves and their technological use. The results concern the acousto-optic and electro-optic effects. The generalized analysis of the electro-optic effect reveals a new high induced birefringence in lithium niobate. A patented optical fiber microphone is presented, and its applications to the measurements of acoustic wave velocity in gases and in the laser ultrasound non-destructive evaluation system are discussed. Finally, the generation of microwaves by an optical method with substantial cost reduction is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We address the question about the velocity of signals carried by Bessel beams wave packets propagating in vacuum and having well defined wavefronts in time. We find that this problem in analogous to that of propagation of usual plane wave packets within dispersive media and conclude that the signal velocity cannot be superluminal. (C) 2001 Elsevier B.V. B.V. All rights reserved.